eic-smear overview

EIC task force meeting
Thomas Burton
14th August 2014

e What Is 1t7?
e .. and what is it not?
e How to use It

e Ask me anything - ‘cause
It’s your last chance :D

eic=smear

Smearer:
Performs fast

MC MC tree code:

Builds ROOT tree

containing events -
common format

generator
output

detector
smearing

e C++ code using ROOT

* Builds with configure/Make or CMake

e Stable version 1.0.3 works on Linux, OS X 10.6+
e Single 1ibeicsmear.so

e Think of it as a “tool kit” rather than a standalone
programme

MC tree code

Event classes

4)

Base DIS event | /defines

Im 1 IS IN
et sioode s | x @y, |{commor
P track list format

PYTHIA*

Event class
for each
generator
adds specific
data

*Also some p+p support,
but only basic

Standard format: macros can analyse

different generators without change

Common ASCII format

<generator name> EVENT FILE |6-line file header

1 KS KF parent childl childN px py pz E
2 KS KF parent childl childN px py pz E

N KS KF parent childl childN px py pz Em x vy z
—=—=—=—=—=—=—=—=—=—=—==== Fvent finished ===============

<repeat event structure> |(Ngacks+3)-line event

https://wiki.bnl.gov/eic/index.php/PY THIA
s

https://wiki.bnl.gov/eic/index.php/PYTHIA#
https://wiki.bnl.gov/eic/index.php/PYTHIA#

Building a tree from ASCII file

Simple build process in ROOT:

ASCII file in
standard format:
header + tracks

p
Event class

_process heade

~

defines how to

Y

, , ROOT
Buildliree(“file.txt”, file
outDir=".",
nEvents=-1);
- N
Does file 1/O, \
processes event Optional
header/tracks arguments
T~ 1000 event/secj - g

Yields “file.root” containing a TTree called “EICTree”

This is all the end-user has to run

(PYTHIA can also support direct ROOT output:
http://svn.ractf.bnl.gov/svn/eic/Generators/pythiaeRHIC/)

http://svn.racf.bnl.gov/svn/eic/Generators/pythiaeRHIC/
http://svn.racf.bnl.gov/svn/eic/Generators/pythiaeRHIC/

Extensibilly - adding an event

e What if you have a new generator?
> Not supported natively
» Maybe has its own output format

e Can define your own event class, inheriting
from an eic-smear class

» e.g. what if we want to add Sartre support?

Include eic-smear event header Inherit your class from it.
Provides basic DIS functionality -

#include "eicsmear/erhic/EventMC.h" Q2 %, Y, track list etc.

namespace erhic {
class EventSartre : public EventMC {
public:
virtual ~EventSartre();
explicit EventSartre(const sartre::Event& event);
Int_t iEvent; ///< Event index counting from 1
Double32_t Q2; ///< Q² reported by Sartre
Double32_t W; ///< W reported by Sartre
Double32_t t; ///< t reported by Sartre
Double32_t s; ///< Squared centre-of-mass energy reported by Sartre
Double32_t xpom; ///< x-Pomeron reported by Sartre
Double32_t beta; ///< β reported by Sartre
Double32_t pol; ///< Polarisation, @ = transverse or 1 = longitudinal
Double32_t dmode; ///< Diffractive mode, @ = coherent, 1 = Incoherent
ClassDef(erhic: :EventSartre, 1)

Implement your own
additional data and methods

What is(n’t) it?

e Utility for smearing of MC output

e [t's NOT a replacement for Geant!

e But, if you are asking...

4)

“Given a (known)
detector performance,
how well can |
measure some physics

observable(s)?”

/
/ ... then maybe it is for you

or

-

G

~

“If | need to measure
X with to some
precision, what

detector performance

do | need?”

Architecture

e Qiriginally written by Michael Savastio (student)

e Fast - thousands of events/second

4 N

* Smears Output “ParticleMCS” track

» tracks: p, E, angle, ID— is stripped-down version of
normal MC track

» DIS kinematics: x, Q2,y \ y

 Not specific to any generator

» Same smearing specification works for all generator
output that follows the common format

(almost) all code is in

“Smear” namespace

The idea Has no “default behaviour”:
you must define everything

Function defining Acceptance
O(X) = for X in

(single) quantity,
X, to smear:

E’ P’ 69(P

f((E. p. 0, ©]) E,p. 0,,pT,pZ

Pl e i P

NOT a “physical | A
detector”: LS mearer”

. - Represents the »
= . [“Smearer”
overall 5 \

measuringa |

: J
. quantity. L“Smearer”
. - Cannot “overlap” :

detectors ’

\

How to use it

e Write a ROOT script: define 0(X) via

text string

Simple Devices

Smear: :Detector createDetector() {
// Resolution in momentum, sigma(P).
// sigma(P) = 0.4%P + 0.3%P"2.
Smear: :Device tracking(“P”, “0.004 * P + 0.003 * pow(P, 2)");
// Resolution in energy, sigma(E) = 14% * sqrt(E)
// 3rd argument == 1 -> smear only photons & electrons.
Smear: :Device emcal("E", "0.14 * sqrt(E)", 1);
// Add devices to a Detector.
Smear: :Detector detector;
detector.AddDevice(tracking);
detector.AddDevice(emcal);
return detector;

} Handles event

e Smear your ROOT tree:

loop, file 1/0O

root[0] SmearTree(createDetector(), “mc.root”, *“smeared.root”);

e Gives a new tree in common MC event format
» scripts for MC events work on smeared events
» Tree just named “Smeared”

» Easy to analyse with TTree “friend” mechanism:

[0] mcFile("pythia.root");
[1] * mcTree (NULL) ;

[2] mcFile.GetObject ("EICTree", mcTree);
[3] mcTree->AddFriend("Smeared", "smeared.root");

e Only operates on final-state particles...

MC Smeared

If a particle is

Event | Q2,x,y Q2 x,y . %
S UL 1.not final-state* OR
Particle 2 NULL 2.not In the detector

Particle 3 Particle 3 — Store NULL p0|nter
otherwise store particle

Particle N Particle N .
Event 2 Q2 x,y Q2,x,y and smear its
Particle | NULL properties

» Keeps 1-to-1 matching between
tracks in MC and smeared trees

*exception: initial beam particles are copied
L L

e Each Smearer has an associated Acceptance
» Acceptance is made of one or more “Zones”
» Each Zone defines (p, E, theta, phi, ...) region
» Zones needn’t be contiguous

» Particles are only accepted if they match at least one
Zone

e By default accepts everything
e (Can also define other acceptance criteria
» “Genre” - hadronic, electromagnetic

» Charge - neutral, charged

Output - important note

> Different quantities may therefore have different
acceptance e.g. smear

» Efor-4<n<4

» pfor-3<n<3
» Only smears quantities for which particle is in acceptance
> store zeros for quantities if particle outside acceptance

> e.g. above, for particle at n = 3.5

» E will be smeared

> p will store zero

Other “Smearers”

e EXxtensible to more specialised devices

> “Bremmstrahlung” class mimics

electron energy loss by photon
emission

> Particle ID classes allow definition of a

particle-misidentification matrix e.qg.
HERMES RICH

Other “Smearers”

» Generic “tracker” class, implementing
Intrinsic resolution

d_p _ P O‘r¢ \/ 720
P ; O3BT (L,)Q n + 4
multiple scattering

dp| 1 0.0136
p lys 0.3Br LB cos?(v)

Ty

Extensibility - define a smearer

#include <eicsmear/smear/Smearer.h>
QUSUEEIRO T LU AR TR LA EN I Hadron energy response in

electromagnetic calorimeter

#include <eicsmear/smear/ParticleMCS.h>

class HadronEnergy: public Smear::Smearer {
public:
HadronEnergy(double mean = 1., double sigma = 0., int genre = Smear::kAll)
: mMean(mean), mSigma(sigma) {
Accept.SetGenre(genre);
}
virtual HadronEnergy* Clone(const char* = "") const {
return new HadronEnergy(*this);
}
virtual void Smear(const erhic::VirtualParticle& mc,
Smear: :ParticleMCS& smeared) {
if(not Accept.Is(mc)) {
return;
}y // if
double energy = gRandom->Gaus(mMean * mc.GetE(), mSigma * mc.GetE(Q));
smeared.SetE(std: :max(energy, 0.));

}

protected:
double mMean; //<! Mean multiplication factor
double mSigma; //<! Width multiplication factor
ClassDef(HadronEnergy, 0)

s

Access and documentation

Read about it;

https://wiki.bnl.gov/eic/index.php/Eic-smear + links

Get it:
Just run directly from EIC nodes OR

Download tarballs from the above page + follow build instructions OR

svn checkout http://svn.racf.bnl.gov/svn/eic/Utilities/eic-smear/trunk eic-smear

Run it:
root[0] gSystem->Load(“/path/to/libeicsmear”);

This is done automatically if you run the EIC logon scripts:

https://wiki.bnl.gov/eic/index.php/Computing

https://wiki.bnl.gov/eic/index.php/Eic-smear
https://wiki.bnl.gov/eic/index.php/Eic-smear
https://svn.racf.bnl.gov/svn/eic/Utilities/eic-smear/trunk/
https://svn.racf.bnl.gov/svn/eic/Utilities/eic-smear/trunk/
https://wiki.bnl.gov/eic/index.php/Computing
https://wiki.bnl.gov/eic/index.php/Computing

